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Fig. 3. Solution error versus r-R which is the distance from the metallic
sphere scatterer. The radius of the metallic sphere is B = 0.3), and
D = 0.3X. The stars show the error using the complete form of the second
order vector ABC and enforcing normal field continuity on the ABS. The
triangles show the error when normal continuity has not been enforced on
the ABS, and the squares show the error when in addition to the absence of
the normal continuity enforcement, the surface divergence term was absent
from the functional.

over the volume modeled, expressed as a percentage of |Hz, .1 ticall
at the point where the largest value of e occurs. Fine meshes were
used so that the discretization errors were reduced to a minimum.

Fig. 3 show the errors for the cases 1), 2), and 3), when D = 0.3X.
It is clear that in case a) the results are far more accurate than those
in cases 2) and 3). In fact, cases 2) and 3) appear to give about the
same accuracy in the computed field.

IV. CONCLUSION

Due to the presence of the surface divergence term, the proper
implementation of the second order absorbing boundary condition
requires that the two extra conditions be explicitly enforced:

1) On the ABS, normal continuity has to be imposed between the
quadrilaterals the ABS is divided into;

2) for the magnetic field case, where the ABS meets an electric
wall, the component of magnetic field normal to the wall must
be set to zero explicitly; for the electric field case, where the
ABS meets a magnetic wall, the component of electric field
normal to the wall must be set to zero explicitly.

Numerical results confirm the theory. If the second order ABC is to
be used, then the two above conditions are necessary. If they are not
imposed, then the error in the near field increases by a factor of at
least two. In addition, if these two conditions are not imposed, the
numerical results showed that the surface divergence term might as
well be dropped out from the formulation.
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Coupling of the PISCES Device Modeler
to a 3-D Maxwell FDTD Solver

Vincent A. Thomas, Michael E. Jones, and Rodney J. Mason

Abstract—We show how PISCES-like semiconductor models can be
joined non-invasively to finite difference time domain models for the
calculation of coupled external electromagnetics. The method involves
“tricking” the standard current boundary condition for the device model
into accepting an effective parallel external capacitance. For nearly steady
state device conditions we show the results for a transmission line-coupled
PISCES diode to agree well with those for an ideal diode.

I. INTRODUCTION

The FDTD method advances Maxwell’s equations in time on a
finite difference mesh [1]. It is being used increasingly to analyze
microwave circuits. Sui ef al. [2] have shown how it might be ex-
tended to systems including active elements. Also, two of us recently
demonstrated a technique [3] for robustly coupling FDTD to SPICE
[4] circuit simulators for subgrid scale modeling. The present note
extends this technique to provide coupling noninvasively of FDTD
to the PISCES [5] device modeler. We demonstrate this procedure
with application to a diode fixed to the end of a transmission line.
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(a) The mesh used for FDTD. (b) Diode at end of a microstrip line.

Fig. 1.

II. APPROACH AND RESULTS
The conventional FDTD approach solves the Maxwell equations

G?E-l-J(E):VXH. (1a)
ot
0H

with centered time and space differencing [5] on the Yee mesh [6],
Fig. 1(a). The local current density J is given as a non-linear function
of the electric field E.

Consider the metal strip lines modeled with this mesh and feeding
the diode of Fig. 1(b). In the free space regions J = 0. Within
the metal strips J = ¢E, where o is the electrical conductivity. To
advance E from time level (m) to level (m 4 1) one traditionally
uses a centering [2] J(™+/?) = o(E(™D) 4 E™)/2. Then, with
V x H™+/2) known from a leap frog integration of (1b), the new
E-field from the time advance of (1a) is

EmD) — gim) [1 - soAt]  VxHM/DAL

[1+ LaAt] e[1+ faAt] @

with & = o /e. In the metal where the conductivity is large o — oo,
and E"Y  _E(™ LV xH™ 1/ /5 The E-field is conserved,
but it will evidence Nyquist oscillations from one time step to the
next. On the average at half times E("T1/?) = ¥V x H"™+/2) /4

Alternatively, the unwanted oscillations can be eliminated by
treating (1b) as an ordinary differential equation in time with the
right-hand side constant [7]. This corresponds to the approach taken
in [8] for spatial differencing. Within the resistive metal this gives

gt — gm) —oAt + V x Him+1/2) [1— e—ozAt]' 3)
a
For large conductivities (3) gives EmTY 5 v x H(m+1/2)/a. In
general, we have found this procedure to be more accurate and stable
than (2).

For lumped elements connecting the transmission lines on various
parts of the mesh. as in the case of the diode in Fig. 1(b), one can
generalize this by transforming (1a) to

av
dt
where for one possible orientation on the mesh the drive voltage V' is
defined as AyE with Ay running across the element, C' = eA/Ay
is an effective capacitance in its neighborhood with 4 = AzAx

C +I(Vy=14 4)
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the local area of cell surfaces on the mesh, and Ay is the distance
between nodes occupied by the element. The total current flowing
though the element is I{V) = AJ, and I; = pAV X H is an
effective drive current (established by the local H gradients) feeding
both the element and its local capacitance.

For simple elements such as the resistor, capacitor, inductor, and
the ideal diode (4) can be integrated analytically and directly over At,
as for (3). For a more complex collection of lumped elements across
the mesh nodes [3] showed that the left-hand side of (4), i.e., voltage
across both the lumped elements and the parallel mesh capacitance,
can be efficiently integrated with the SPICE {4] package.

In some instances, however, the circuit coupled behavior of lumped
elements is insufficiently characterized for SPICE, so that a device
model is needed to furnish I(V'). Typically then, a PISCES [5]-like
model would be used. We will now show how PISCES can be used to
model a real diode between transmission lines on the mesh, as shown
in Fig. 1(b). PISCES will readily provide a history for V = V(I)
across a solitary device. However, no option exists in the standard
code to calculate voltage across a device in parallel with a capacitor.
For this “mixed mode” situation several approaches at first seem plau-
sible: 1) The matrix elements inside the Newtonian solver in PISCES
can be augmented to include the capacitor’s effects. Unfortunately for
most users, this implies an unlikely access to the commercial source
code. 2) With numerical derivatives calculated from PISCES one
might form I(V(m+Dy = [(vim)y 4 i%?—’[\/(m“) - V™), and
solve (4) with this for the new V(™ We found this to unstable at
the time steps usually controlling FDTD. 3) One can “trick” standard
PISCES into including the capacitor properly. This last approach is
simple and successful.

Standard PISCES permits the use of a capacitor C' and a resistor
R in a “parallel RC combination” in series with a device under an
applied voltage source Vap, across the full system, and can derive
a voltage V' across the device carrying a current /. It employs the
general boundary condition

Vapp = V) | 4 2(Vapp — V)
"

Here I.,,, refers to current in the electrons and holes, and I4.s, is the
internal displacement current calculated in the device. The successful
trick is to change Vi, abruptly at the start of each new FDTD time
step. Then PISCES neglects the dV,,,/dt term in (5) (because it
is infinite). One can then make R large enough so that V' can be
ignored in the first term, and one can associate Iy with Vap, /R at
each FDTD time step, using as initial conditions the state of the
PISCES simulation at the end of the previous time step. Thus, the
boundary condition (5) becomes equivalent to (4).

We have tested this procedure on a case with known behav-
ior—namely a diode at the end of a transmission line, as depicted
in Fig. 1(b). The time scale for the electromagnetic signal was very
long, so that we were assured to have steady state device behavior
by the end of each FDTD time step.

To perform this test, first we employed the analytic I-17 formula
for an ideal diode, i.e.,

I(VY = L% — 1) ©6)

= ]n + Ip + ]dzsp = I(Vv) (5)

for which I, is the saturation current, Vo = ¢/xT with ¢ the electron
charge, x Boltzmann’s constant and 1" the electron temperature. We
placed this in (4) and integrated analytically over an FDTD time step
At = ) ™) with o = ¢"/Y°, and @ = 1+ I4/1, to produce

CVs U p{m+1)
i = At 7
1, [log (u — a>|V(m) )]

yielding E{™ = V(™1 /Ay at the location of the diode for the
next FDTD update (1b). A 10 volt sinusoidal signal was applied at
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Fig. 2. (a) Time dependent voltage across a diode at the end of a trans-
mission line. Solid: Ideal analytically integrated voltage. Dashed: PISCES
integrated voltage, including external displacement current effects. (b) Devi-
ation: Vprsoes — Videat = VV.

the end of the line, and evaluated for 150 usec. The solid line in
Fig. 2(a) shows the resultant voltage across the diode. The signal is
properly clipped at positive voltages when the diode is conducting.

Next, we used (5), and our abrupt-start trick to calculate V(%)
and E§m+1) from PISCES. We plot the resultant diode voltage for the
same sinusoidal input as the dashed curve in Fig. 2(a). Fig. 2(b) shows
that the deviation from ideal is small, validating the new approach.
The PISCES approach is, of course, much more general, and can
be used with higher frequency input to calculate the net transient
response of the coupled transmission line and device.

III. CONCLUSION

We have shown how a direct integration approach for simple
lumped elements can improve the numerical properties of models
employing FDTD analysis. More significantly, we have developed a
noninvasive procedure by which standard PISCES-like software can
be combined with FDTD to model the coupled internal dynamics of
devices with external electromagnetics.
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On the Time Step in Hybrid
Symmetrical Condensed TLLM Nodes

Vladica Trenkic, Christos Christopoulos, and Trevor M. Benson

Abstract— New formulas for the maximum permissible time step in
TLM hybrid nodes modeling anisotropic media are introduced and
analyzed. It is shown that the value of the time step in most cases can
be higher than that suggested by the minimum node dimension. The
chosen value of the time step has significant impact on the dispersion
characteristics of the hybrid symmetrical condensed node.

1. INTRODUCTION

The hybrid symmetrical condensed node (HSCN) for the TLM
method was originally described in [1]. Further generalizations of
this node and a complementary HSCN were recently proposed
in [2]. In the original HSCN [1], referred to as Type I in [2],
all required inductances are modeled in the transmission lines,
while open-circuit stubs are used to make up for any deficit in
capacitances. A complementary Type II HSCN introduced in [2]
models extra capacitances by altering the characteristic impedances
of transmission-lines and uses short-circuit stubs to make up for any
deficit in inductances.

The HSCN can operate with a larger time step than the stubbed
SCN [3] due to the fact that the time step is not strictly dependent
on the ratio of the largest to the smallest node dimension. Some con-
siderations and comparisons of the maximum time step in the HSCN
modeling isotropic media are given in [4], [5]. In the formulation
of the HSCN for anisotropic media [2], the time step was related to
the smallest mesh dimension Al as At = Al/(2c). However, the
maximum permissible time step was not defined.

In this paper we introduce the complete formulation for the
maximum time step allowed in the HSCN for modeling anisotropic
materials, based on the condition that characteristic admittances of
the stubs must. be nonnegative when modeling a passive medium [6].
We show that in most cases the value of the time step can be higher
than that stated in [2]. Moreover, we demonstrate that dispersion
characteristics of the HSCN are dependent on the chosen time step.

II. MaxiMum TmME STEP FOR HSCN

Contrary to the derivations in [1] and [2] where normalized
characteristic admittances of stubs are given in terms of the smallest
node dimension A/, derivations in [5] are given directly in terms of
the time step At. For an isotropic medium with electrical parameters
£r, t» and a node with dimensions Az, Ay, Az, the normalized
stub characteristic admittances for the Type I HSCN are given as [5]
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