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Fig. 3. Solution error versus r-R which is the distance from the metallic
sphere scatterer. The radms of the metallic sphere is R = O.3A, and
D = 0.3A. The stars show the error using the complete form of the second
order vector ABC and enforcing normal field contirrmty on the ABS. The
triangles show the error when normal continuity has not heen enforced on

the ABS, and the squares show the error wheu in addition to the absence of
the normal continuity enforcement, the surface divergence term was absent

from the functional.

over the volume modeled, expressed as a percentage of IH~nalytical

at the point where the largest value of e occurs. Fine meshes were

used so that the discretization errors were reduced to a minimum.

Fig. 3 show the errors for the cases 1), 2), and 3), when D = 0.3J.

It is clear that in case a) the results are far more accurate than those

in cases 2) and 3). In fact, cases 2) and 3) appear to give about the

same accuracy in the computed field.

IV. CONCLUSION

Due to the presence of the surface divergence term, the proper

implementation of the second order absorbing boundary condition

requires that the two extra conditions be explicitly enforced:

1)

2)

On the ABS, normal continuity has to be imposed between the

quadrilaterals the ABS is divided into;

for the magnetic field case, where the ABS meets an electric

wall, the component of magnetic field normal to the wall must

be set to zero explicitly; for the electric field case, where the

ABS meets a magnetic wall, the component of electric field

normal to the wall must be set to zero explicitly.

Numerical results confirm the theory. If the second order ABC is to

be used, then the two above conditions are necessary. If they are not

imposed, then the error in the near field increases by a factor of at

least two. In addition, if these two conditions are not imposed, the

numerical results showed that the surface divergence term might as

well be dropped out from the formulation.
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Coupling of the PISCES Device Modeler

to a 3-D Maxwell FDTD Solver

Vincent A. Thomas, Michael E. Jones, and Rodney J. Mason

Abstract-We show how PISCES-tike semiconductor models can be
joined non-iuvasively to finite difference time domain models for the
calculation of coupled external electromagnetic, The method involves

“tricking” the standard current boundary condition for the device model
into accepting an effective parallel external capacitance. For nearly steady

state device conditions we show the results for a transmission tine-coupled
PISCES diode to agree well with those for an ideal diode.

I. INTRODUCTION

The FDTD method advances Maxwell’s equations in time on a

finite difference mesh [1]. It is being used increasingly to analyze

microwave circuits. Sui et al. [2] have shown how it might be ex-

tended to systems including active elements. Also, two of us recently

demonstrated a technique [3] for robustly coupling FDTD to SPICE

[4] circuit simulators for subgrid scale modeling. The present note

extends this technique to provide coupling noninvasively of FDTD

to the PISCES [5] device modeler. We demonstrate this procedure

with application to a diode fixed to the end of a transmission line.
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Fig. 1. (a) The mesh used for FDTD. (b) Diode at end of a microstrip line.

II. APPROACH A~~ RESULTS

The conventional FDTD approach solves the Maxwell equations

c~+J(E)=Vx H.

8H

x=
–pV x E

(la)

(lb)

with centered time and space differencing [5] on the Yee mesh [6],

Fig. l(a). The local current density J is given as a non-linear function

of the electric field E.

Consider the metal strip lines modeled with this mesh and feeding

the diode of Fig. l(b). In the free space regions J = O. Within

the metal strips J = uE, where a is the electrical conductivity. To

advance E from time level (m) to level (m + 1) one traditionally

uses a centering [2] Jt~+li2J = a(E(~~ 1) + Em )/2. Then, with

V x H(~~l/2) known from a leap frog integration of (lb), the new

E-field from the time advance of (la) is

E(~+l) _ E(m) [1- ;@At] + ~ x H(m+’/2)At (2)—
[1+ ;aAt] e[l + ;QAt]

with o = u/c. In the metal where the conductivity is large @ ~ cc,

and E(n+l) ~ –E(m)+VXH(m+112)/a. The E-field is conserved,

but it will evidence Nyquist oscillations from one time step to the

next. On the average at half times 12(m+lfz) = V x Hfw+l/2) /u.

Alternatively, the unwanted oscillations can be eliminated by

treating (lb) as an ordinary differential equation in time with the

right-hand side constant [7]. This corresponds to the approach taken

in [8] for spatial differencing. Within the resistive metal this gives

E(m+]) = E(WL)e-~A~ +
v ~ H(m+l/2)

[1 - e-@A’]. (3)
u

For large conductivities (3) gives E(m+l) ~ V x H(~+l/21 /u. In

general, we have found this procedure to be more accurate and stable

than (2).

For lumped elements connecting the transmission lines on various

parts of the mesh, as in the case of the diode in Fig. l(b), one can

generalize this by transforming (la) to
r

c~+uv)=h (4)

where for one possible orientation on the mesh the chive voltage V’ is

defined as AyE with A y running across the element, C = eA/Ay

is an effective capacitance in its neighborhood with A = AxA z

the local area of cell surfaces on the mesh, and Ay is the distance

between nodes occupied by the element. The total current flowing

though the element is I(V) = M, and Id = pAV x H is an

effective drive current (established by the local H gradients) feeding

both the element and its local capacitance.

For simple elements such as the resistor, capacitor, inductor, and

the ideal diode (4) can be integrated analytically and directly over At,

as for (3). For a more complex COIIection of lumped elements across

the mesh nodes [3] showed that the left-hand side of (4), i.e., voltage

across both the lumped elements and the parallel mesh capacitance,

can be efficiently integrated with the SPICE [4] package.

In some instances, however, the circuit coupled behavior of lumped

elements is insufficiently characterized for SPICE, so that a device

model is needed to furnish I(V). Typically then, a PISCES [5]-like

model would be used. We will now show how PISCES can be used to

model a real diode between transmission lines on the mesh, as shown

in Fig. l(b). PISCES will readily provide a history for V = V(I)

across a solitary device. However., no option exists in the standard

code to calculate voltage across a cievice in parallel with a capacitor.

For this “mixed mode” situation several approaches at first seem plau-

sible: 1) The matrix elements inside the Newtonian solver in PISCES

can be augmented to include the capacitor’s effects. Unfortunately for

most users, this implies an unlikely access to the commercial source

code, 2) With numerical derivatives calculated from PISCES one

might form I(V(m+l)) = J(V(ml ) + ~[V(myl) – v(m)], and

solve (4) with this for the new V(r”+l). We found this to unstable at

the time steps usually controlling FDTD. 3) One can “trick” standard

PISCES into including the capacitor properly. This last approach is

simple and successful.

Standard PISCES permits the use of a capacitor C and a resistor

R in a “parallel RC combination” in series with a device under an

applied voltage source VaPP across the full system, and can derive

a voltage V across the device carrying a current 1. It employs the

general boundary condition

(V.,P – v) + cd(v~~t– ‘) = In + 1P + Id,,,, = I(V). (5)

R

Here I., ~ refers to current in the electrons and holes, and l&.p is the

internal displacement current calculated in the device. The successful

trick is to change VaPP abruptly at the start of each new FDTD time

step, Then PISCES neglects the dVaPP /dt term in (5) (because it

is infinite). One can then make R large enough so that V can be

ignored in the first term, and one can associate Id with V,PP /R at

each FDTD time step, using as initial conditions the state of the

PISCES simulation at the end of the previous time step. Thus, the

boundary condition (5) becomes equivalent to (4).

We have tested this procedure on a case with known behav-

ior—namely a diode at the end of a transmission line, as depicted

in Fig. 1(b). The time scale for the electromagnetic signal was very

long, so that we were assured to have steady state device behavior

by the end of each FDTD time step.

To perform this test, first we employed the analytic 1-V formula

for an ideal diode, i.e.,

I(V)’ = I,(ev’v” – 1) (6)

for which 1, is the saturation current, VO = y/tcT with q the electron

charge, K Boltzmann’s constant and T the electron temperature. We

placed thk in (4) and integrated analytically over an FDTD time step

At = t(m+l)- t(m),with u = e“/vO, and a = 1 +~d/~s to produce

(7)

(~+1) = v(~+l) /Ay at the location of the diode for theyielding EY

next FDTD update (lb). A 10 volt sinusoidal signal was applied at
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Fig. 2. (a) Time dependent voltage across a diode at the end of a trans-
mission line. Solid: Ideal analytically integrated voltage. Dashed: PISCES
integrated voltage, including external displacement current effects. (b) Devi-
ation: J’pIscES — VLdea~ = VV.

the end of the line, and evaluated for 150 &sec. The solid line in

Fig. 2(a) shows the resultant voltage across the diode. The signal is

properly clipped at positive voltages when the diode is conducting.

Next, we used (5), and our abrupt-start trick to calculate V(m+~)

and 11~~+1) from PISCES. We plot the resultant diode voltage for the

same sinusoidal input as the dashed curve in Fig. 2(a). Fig. 2(b) shows

that the deviation from ideal is small, validating the new approach.

The PISCES approach is, of course, much more general, and can

be used with higher frequency input to calculate the net transient

response of the coupled transmission line and device.

III. CONCLUSION

We have shown how a direct integration approach for simple

lumped elements can improve the numerical properties of models

employing FDTD analysis. More significantly, we have developed a

noninvasive procedure by which standard PISCES-like software can

be combined with FDTD to model the coupled internal dynamics of

devices with external electromagnetic.
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On the Time Step in Hybrid

Symmetrical Condensed TLM Nodes

Vladica Ttmkic, Christos Christopotdos, and Trevor M. Benson

Abstract— New formulas for the maximum permissible time step in
TLM hybrid nodes modeling anisotropic media are introduced and

analyzed. It is shown that the value of the time step in most cases can

be higher thaur that suggested by the miuimum node dimension. The
chosen value of the time step has significant impact on the dispersion

characteristics of the hybrid symmetrical condensed node.

I. INTRODUCTION

The hybrid symmetrical condensed node (HSCN) for the TLM

method was originally described in [1]. Further generalizations of

this node and a complementary HSCN were recently proposed

in [2]. In the original HSCN [1], referred to as Type I in [2],

all required inductances are modeled in the transmission lines,

while open-circuit stubs are used to make up for any deficit in

capacitances. A complementary Type II HSCN introduced in [2]

models extra capacitances by altering the characteristic impedances

of transmission-lines and uses short-circuit stubs to make up for any

deficit in inductances.

The HSCN can operate with a larger time step than the stubbed

SCN [3] due to the fact that the time step is not strictly dependent

on the ratio of the largest to the smallest node dimension. Some con-

siderations and comparisons of the maximum time step in the HSCN

modeling isotropic media are given in [4], [5]. In the formulation

of the HSCN for anisotropic media [2], the time step was related to

the smallest mesh dimension Al as At = Al/ (2c). However, the

maximum permissible time step was not defined.

In this paper we introduce the complete formulation for the

maximum time step allowed in the HSCN for modeling anisotropic

materials, based on the condition that characteristic admittances of

the stubs must be nonnegative when modeling a passive medium [6].

We show that in most cases the value of the time step can be higher

than that stat~d in [2]. Moreover, we demonstrate that dispersion

characteristics of the HSCN are dependent on the chosen time step.

II. MAXIMUM TIME STEP FOR HSCN

Contraty to the derivations in [1] and [2] where normalized

characteristic admittances of stubs are given in terms of the smallest

node dimension Al, derivations in [5] are given directly in terms of

the time step At.For an isotropic medium with electrical parameters

~,, p, and a node with dimensions Ax, Ay, Az, the normalized

stub characteristic admittances for the Type I HSCN are given as [5]
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